Docencia Ciencias de la Tierra, Enseñanza Geociencias, Comunicación Ciencias de la Tierra
ISSN-e: 2992-8087
USAGE OF THE LIVINGSTONE CORER IN LACUSTRINE ENVIRONMENTS: A KEY TOOL FOR PALEOENVIRONMENTAL RECONSTRUCTIONS
PDF (Español (España))

Keywords

Livingstone piston corer
sampling of sedimentary sequences

How to Cite

Olivares Casillas, G., Vázquez-Molina, Y., & Correa-Metrio, A. (2025). USAGE OF THE LIVINGSTONE CORER IN LACUSTRINE ENVIRONMENTS: A KEY TOOL FOR PALEOENVIRONMENTAL RECONSTRUCTIONS. Enseñanza Y Comunicación De Las Geociencias, 4(1). https://doi.org/10.22201/cgeo.29928087e.2025.4.1.80

Abstract

Over the past few decades, the environmental degradation of ecosystems has accelerated at an unprecedented rate. Global climate change and the alteration of natural habitats have negatively impacted both biodiversity and human well-being. Throughout the past millennia, ecosystems have faced similar changes associated with different modes of climate variability and diverse patterns of human occupation. Thus, studying the past serves as a reference for understanding the functioning of the Earth system in the present. In this context, the recovery and analysis of sedimentary records that allow the identification of baseline environmental conditions are fundamental. In this sense, piston coring is an efficient and reliable technique for extracting sedimentary cores without damaging the integrity of the sediments. In this article, we explore the advantages of piston coring and present, through a video, the detailed methodology for recovering sedimentary sequences using a modified Livingstone piston corer in lacustrine environments.

https://doi.org/10.22201/cgeo.29928087e.2025.4.1.80
PDF (Español (España))

References

Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., & Finnegan, S. (2013). Climate change and the past, present, and future of biotic interactions. Science, 341(6145), 499-504. https://doi.org/10.1126/science.1237184

Bradley, R. S. (2015). Paleoclimatology: reconstructing climates of the Quaternary. Elsevier Inc.

Brenner, M., Hodell, D. A., Curtis, J. H., Rosenmeier, M. F., Anselmetti, F. S., & Ariztegui, D. (2003). Paleolimnological approaches for inferring past climate change in the Maya region: recent advances and methodological limitations. In M. F. A. A. Gomez-Pompa, S.L. Fedick, J.J. Jimenez-Osornio (Ed.), The Lowland Maya Area: Three Millennia at the Human–Wildland Interface, Haworth Press, Binghamton, NY. (pp. 45-75).

Catalan, J., Pla-Rabés, S., Wolfe, A. P., Smol, J. P., Rühland, K. M., Anderson, N. J., Kopáček, J., Stuchlík, E., Schmidt, R., & Koinig, K. A. (2013). Global change revealed by palaeolimnological records from remote lakes: a review. Journal of Paleolimnology, 513-535. https://doi.org/10.1007/s10933-013-9681-2

Cohen, A. S. (2003). Paleolimnology: The history and evolution of lake systems. Oxford University Press.

Colinvaux, P. A., De Oliveira, P. E., & Moreno, J. E. (1999). Amazon pollen manual and atlas. Harwood Academic Press.

Ford, J. (1989). The effects of chemical stress on aquatic species composition and community structure. In J. R. K. S. A. Levin, M. A. Harwell, K. D. Kimball (Ed.), Ecotoxicology: problems and approaches (pp. 99-144). Springer.

Fordham, D. A., Jackson, S. T., Brown, S. C., Huntley, B., Brook, B. W., Dahl-Jensen, D., Gilbert, M. T. P., Otto-Bliesner, B. L., Svensson, A., & Theodoridis, S. (2020). Using paleo-archives to safeguard biodiversity under climate change. Science, 369(6507), eabc5654. https://doi.org/10.1126/science.abc5654

Fowler, D., Steadman, C. E., Stevenson, D., Coyle, M., Rees, R. M., Skiba, U., Sutton, M., Cape, J. N., Dore, A., & Vieno, M. (2015). Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 15(24), 13849-13893. https://doi.org/doi:10.5194/acp-15-13849-2015

Glew, J. R., Smol, J. P., & Last, W. M. (2001). Sediment core collection and extrusion. In W. M. Last & J. P. Smol (Eds.), Tracking Environmental Change Using Lake Sediments. Basin Analysis, Coring, and Chronological Techniques (Vol. 1, pp. 73-105). Kluwer Academic Publishers.

IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge, UK and New York, NY, USA (3056 pp.). https://doi.org/10.1017/9781009325844

IPCC. (2023). Sections. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115. https://doi.org/10.59327/IPCC/AR6-9789291691647

Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., De los Rios-Escalante, P. R., Farooqi, Z.-U.-R., Ali, L., & Shafiq, M. (2023). Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. Journal of King Saud University-Science, 35(5), 102693. https://doi.org/10.1016/j.jksus.2023.102693

Larsen, C. P., & MacDonald, G. M. (1993). Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies. Quaternary Science Reviews, 12(9), 781-792. https://doi.org/10.1016/0277-3791(93)90017-G

Liefert, D. T., & Shuman, B. N. (2020). Pervasive desiccation of North American lakes during the Late Quaternary. Geophysical Research Letters, 47(3), e2019GL086412. https://doi.org/10.1029/2019GL086412

Livingstone, D. A. (1955). A lightweight piston sampler for lake deposits. Ecology, 36(1), 137-139. https://doi.org/10.2307/1931439

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate change and ecosystems: threats, opportunities and solutions. 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104

Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., & Staubwasser, M. (2004). Holocene climate variability. Quaternary Research, 62, 243-255. https://doi.org/10.1016/j.yqres.2004.07.001

Meerhoff, M., & Beklioğlu, M. (2024). Shallow lakes and ponds. In Wetzel's Limnology (pp. 859-892). Elsevier. https://doi.org/10.1016/B978-0-12-822701-5.00026-4

Meyers, P., & Ishiwatari, R. (1995). Organic matter accumulation records in lake sediments. Physics and chemistry of lakes, 279-328. https://doi.org/10.1007/978-3-642-85132-2_10

Nelson, A. R. (2015). Coastal sediments. In I. Shennan, A. J. Long, & B. P. Horton (Eds.), Handbook of Sea‐Level Research (pp. 47-65). https://doi.org/10.1002/9781118452547.ch4

O’Sullivan, P. (2004). Palaeolimnology. In P. E. O´ Sullivan & C. S. Reynolds (Eds.), The Lakes Handbook. Limnology and Limnetic Ecology (Vol. 1, pp. 609-666). Blackwell Publishing Ltd.

Rinawati, F., Stein, K., & Lindner, A. (2013). Climate change impacts on biodiversity—the setting of a lingering global crisis. Diversity, 5(1), 114-123. https://doi.org/10.3390/d5010114

Schumacher, B. (2003). Literature Review and Report Surface-Sediment Sampling Technologies. G1058. 3.1. 03.104, 2.

Smol, J. P. (1992). Paleolimnology: an important tool for effective ecosystem management. Journal of aquatic ecosystem health, 1, 49-58. https://doi.org/10.1007/BF00044408

Smol, J. P. (2008). Pollution of lakes and rivers: a paleoenvironmental perspective (2nd edition ed.). Oxford University Press, New York.

Smol, J. P., Birks, H. J. B., & Last, W. M. (2001a). Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal, and Siliceous Indicators (Vol. 3). Kluwer Academic Publishers.

Smol, J. P., Birks, H. J. B., & Last, W. M. (2001b). Tracking Environmental Change Using Lake Sediments. Zoological Indicators (Vol. 4). Kluwer Academic Publishers.

Smol, J. P., Walker, I. R., & Leavitt, P. R. (1991). Paleolimnology and hindcasting climatic trends. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 24(2), 1240-1246. https://doi.org/10.1080/03680770.1989.11898952

Thuiller, W. (2007). Climate change and the ecologist. Nature, 448(7153), 550-552. https://doi.org/10.1038/448550a

Travis, J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1514), 467-473. https://doi.org/10.1098/rspb.2002.2246

Verschuren, D. (1999). Sedimentation controls on the preservation and time resolution of climate-proxy records from shallow fluctuating lakes. Quaternary Science Reviews, 18(6), 821-837. https://doi.org/10.1016/S0277-3791(98)00065-1

Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., & Florindo, F. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509), 1383-1387. https://doi.org/10.1126/science.aba6853

Williamson, C. E., Saros, J. E., Vincent, W. F., & Smol, J. P. (2009). Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography, 54(6part2), 2273-2282. https://doi.org/10.4319/lo.2009.54.6_part_2.2273

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Universidad Nacional Autónoma de México

Downloads

Download data is not yet available.