Docencia Ciencias de la Tierra, Enseñanza Geociencias, Comunicación Ciencias de la Tierra
ISSN-e: 2992-8087
Uso del nucleador tipo Livingstone en ambientes lacustres: una herramienta clave para reconstrucciones paleoambientales
PDF

Palabras clave

Nucleador por pistón tipo Livingstone
Muestreo de secuencias sedimentarias

Cómo citar

Olivares Casillas, G., Vázquez-Molina, Y., & Correa-Metrio, A. (2025). Uso del nucleador tipo Livingstone en ambientes lacustres: una herramienta clave para reconstrucciones paleoambientales. Enseñanza Y Comunicación De Las Geociencias, 4(1). https://doi.org/10.22201/cgeo.29928087e.2025.4.1.80

Resumen

En las últimas décadas, la degradación ambiental de los ecosistemas se ha acelerado a un ritmo sin precedentes. El cambio climático global y la alteración de los hábitats naturales han repercutido negativamente tanto a la biodiversidad como al bienestar humano. A través de los últimos milenios, los ecosistemas han enfrentado cambios similares asociados con distintos modos de variabilidad climática y diversos patrones de ocupación humana. Así, el estudio del pasado sirve como referencia para entender el funcionamiento del sistema terrestre en el presente. En este contexto, la recuperación y análisis de registros sedimentarios que permitan la identificación de condiciones ambientales de línea base son fundamentales. En este sentido, la nucleación por pistón es una técnica eficiente y confiable para extraer paquetes sedimentarios sin dañar la integridad de los sedimentos. En este artículo, exploramos las ventajas de nucleación por pistón, y mostramos, a través de un video, la metodología detallada para llevar a cabo la recuperación de secuencias sedimentarias usando un nucleador de pistón Livingstone modificado en ambientes lacustres.

https://doi.org/10.22201/cgeo.29928087e.2025.4.1.80
PDF

Citas

Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., & Finnegan, S. (2013). Climate change and the past, present, and future of biotic interactions. Science, 341(6145), 499-504. https://doi.org/10.1126/science.1237184

Bradley, R. S. (2015). Paleoclimatology: reconstructing climates of the Quaternary. Elsevier Inc.

Brenner, M., Hodell, D. A., Curtis, J. H., Rosenmeier, M. F., Anselmetti, F. S., & Ariztegui, D. (2003). Paleolimnological approaches for inferring past climate change in the Maya region: recent advances and methodological limitations. In M. F. A. A. Gomez-Pompa, S.L. Fedick, J.J. Jimenez-Osornio (Ed.), The Lowland Maya Area: Three Millennia at the Human–Wildland Interface, Haworth Press, Binghamton, NY. (pp. 45-75).

Catalan, J., Pla-Rabés, S., Wolfe, A. P., Smol, J. P., Rühland, K. M., Anderson, N. J., Kopáček, J., Stuchlík, E., Schmidt, R., & Koinig, K. A. (2013). Global change revealed by palaeolimnological records from remote lakes: a review. Journal of Paleolimnology, 513-535. https://doi.org/10.1007/s10933-013-9681-2

Cohen, A. S. (2003). Paleolimnology: The history and evolution of lake systems. Oxford University Press.

Colinvaux, P. A., De Oliveira, P. E., & Moreno, J. E. (1999). Amazon pollen manual and atlas. Harwood Academic Press.

Ford, J. (1989). The effects of chemical stress on aquatic species composition and community structure. In J. R. K. S. A. Levin, M. A. Harwell, K. D. Kimball (Ed.), Ecotoxicology: problems and approaches (pp. 99-144). Springer.

Fordham, D. A., Jackson, S. T., Brown, S. C., Huntley, B., Brook, B. W., Dahl-Jensen, D., Gilbert, M. T. P., Otto-Bliesner, B. L., Svensson, A., & Theodoridis, S. (2020). Using paleo-archives to safeguard biodiversity under climate change. Science, 369(6507), eabc5654. https://doi.org/10.1126/science.abc5654

Fowler, D., Steadman, C. E., Stevenson, D., Coyle, M., Rees, R. M., Skiba, U., Sutton, M., Cape, J. N., Dore, A., & Vieno, M. (2015). Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 15(24), 13849-13893. https://doi.org/doi:10.5194/acp-15-13849-2015

Glew, J. R., Smol, J. P., & Last, W. M. (2001). Sediment core collection and extrusion. In W. M. Last & J. P. Smol (Eds.), Tracking Environmental Change Using Lake Sediments. Basin Analysis, Coring, and Chronological Techniques (Vol. 1, pp. 73-105). Kluwer Academic Publishers.

IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge, UK and New York, NY, USA (3056 pp.). https://doi.org/10.1017/9781009325844

IPCC. (2023). Sections. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115. https://doi.org/10.59327/IPCC/AR6-9789291691647

Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., De los Rios-Escalante, P. R., Farooqi, Z.-U.-R., Ali, L., & Shafiq, M. (2023). Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. Journal of King Saud University-Science, 35(5), 102693. https://doi.org/10.1016/j.jksus.2023.102693

Larsen, C. P., & MacDonald, G. M. (1993). Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies. Quaternary Science Reviews, 12(9), 781-792. https://doi.org/10.1016/0277-3791(93)90017-G

Liefert, D. T., & Shuman, B. N. (2020). Pervasive desiccation of North American lakes during the Late Quaternary. Geophysical Research Letters, 47(3), e2019GL086412. https://doi.org/10.1029/2019GL086412

Livingstone, D. A. (1955). A lightweight piston sampler for lake deposits. Ecology, 36(1), 137-139. https://doi.org/10.2307/1931439

Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate change and ecosystems: threats, opportunities and solutions. 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104

Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., & Staubwasser, M. (2004). Holocene climate variability. Quaternary Research, 62, 243-255. https://doi.org/10.1016/j.yqres.2004.07.001

Meerhoff, M., & Beklioğlu, M. (2024). Shallow lakes and ponds. In Wetzel's Limnology (pp. 859-892). Elsevier. https://doi.org/10.1016/B978-0-12-822701-5.00026-4

Meyers, P., & Ishiwatari, R. (1995). Organic matter accumulation records in lake sediments. Physics and chemistry of lakes, 279-328. https://doi.org/10.1007/978-3-642-85132-2_10

Nelson, A. R. (2015). Coastal sediments. In I. Shennan, A. J. Long, & B. P. Horton (Eds.), Handbook of Sea‐Level Research (pp. 47-65). https://doi.org/10.1002/9781118452547.ch4

O’Sullivan, P. (2004). Palaeolimnology. In P. E. O´ Sullivan & C. S. Reynolds (Eds.), The Lakes Handbook. Limnology and Limnetic Ecology (Vol. 1, pp. 609-666). Blackwell Publishing Ltd.

Rinawati, F., Stein, K., & Lindner, A. (2013). Climate change impacts on biodiversity—the setting of a lingering global crisis. Diversity, 5(1), 114-123. https://doi.org/10.3390/d5010114

Schumacher, B. (2003). Literature Review and Report Surface-Sediment Sampling Technologies. G1058. 3.1. 03.104, 2.

Smol, J. P. (1992). Paleolimnology: an important tool for effective ecosystem management. Journal of aquatic ecosystem health, 1, 49-58. https://doi.org/10.1007/BF00044408

Smol, J. P. (2008). Pollution of lakes and rivers: a paleoenvironmental perspective (2nd edition ed.). Oxford University Press, New York.

Smol, J. P., Birks, H. J. B., & Last, W. M. (2001a). Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal, and Siliceous Indicators (Vol. 3). Kluwer Academic Publishers.

Smol, J. P., Birks, H. J. B., & Last, W. M. (2001b). Tracking Environmental Change Using Lake Sediments. Zoological Indicators (Vol. 4). Kluwer Academic Publishers.

Smol, J. P., Walker, I. R., & Leavitt, P. R. (1991). Paleolimnology and hindcasting climatic trends. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 24(2), 1240-1246. https://doi.org/10.1080/03680770.1989.11898952

Thuiller, W. (2007). Climate change and the ecologist. Nature, 448(7153), 550-552. https://doi.org/10.1038/448550a

Travis, J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1514), 467-473. https://doi.org/10.1098/rspb.2002.2246

Verschuren, D. (1999). Sedimentation controls on the preservation and time resolution of climate-proxy records from shallow fluctuating lakes. Quaternary Science Reviews, 18(6), 821-837. https://doi.org/10.1016/S0277-3791(98)00065-1

Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S., Bohaty, S. M., De Vleeschouwer, D., & Florindo, F. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509), 1383-1387. https://doi.org/10.1126/science.aba6853

Williamson, C. E., Saros, J. E., Vincent, W. F., & Smol, J. P. (2009). Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography, 54(6part2), 2273-2282. https://doi.org/10.4319/lo.2009.54.6_part_2.2273

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2025 Universidad Nacional Autónoma de México

Descargas